فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

PATIL V. | Sarode T.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    7
  • شماره: 

    2
  • صفحات: 

    287-297
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    207
  • دانلود: 

    0
چکیده: 

Image Hashing allows compression, enhancement or other signal processing operations on digital Images that are usually acceptable manipulations. Cryptographic hash functions are very sensitive to even single bit changes in Image. Image Hashing is a sum of important quality features in quantized form. In this paper, we propose a novel Image Hashing algorithm for authentication, which is more robust against various kinds of attacks. In the proposed approach, a short hash code is obtained using a minimum magnitude Center Symmetric Local Binary Pattern (CSLBP). The desirable discrimination power of Image hash is maintained by modified Local Binary Pattern (LBP) based edge weight factor generated from gradient Image. The proposed Hashing method extracts texture features using the CSLBP. The discrimination power of Hashing is increased by weight factor during the CSLBP histogram construction. The generated histogram is compressed to 1/4 of the original histogram by a minimum magnitude of CSLBP. The proposed method, has a two-fold advantage; first, it has small length, and second, it has an acceptable discrimination power. The experimental results are demonstrated by the hamming distance and the TPR, FPR, and ROC curves. Therefore, the proposed method successfully does a fair classification of content preserving and content changing Images.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 207

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Ghasemi M. | Hassanpour H.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    24
  • شماره: 

    8
  • صفحات: 

    1856-1864
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    23
  • دانلود: 

    0
چکیده: 

Face recognition has become a crucial topic in recent decades, which offers important opportunities for applications in security surveillance, human-computer interaction, and forensics. However, it poses challenges, including uncontrolled environments, large datasets, and insufficiency of training data. In this paper, a face recognition system is proposed to iron out the above problems with a new framework based on a Hashing function in a three-stage filtering approach. At the first stage, candidate subjects are chosen using the Locality-Sensitive Hashing (LSH) function. We employ a voting system to select candidates via disregarding a large number of dissimilar identities considering their local features. At the second stage, a robust Image Hashing based on Discrete Cosine Transform (DCT) coefficients is used to further refine the candidate Images in terms of global visual information. Finally, the test Image is recognized among selected identities using other visual information, resulting in further accuracy gains. Extensive experiments on FERET, AR, and ORL datasets show that the proposed method outperforms with a significant improvement in accuracy over the state-of-the-art methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    11
  • شماره: 

    4
  • صفحات: 

    1-18
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    71
  • دانلود: 

    18
چکیده: 

توسعه پزشکی نوین از یک طرف امکان ذخیره سازی تصاویر پزشکی را فراهم کرده است و از طرف دیگر بدلیل افزایش روزانه ذخیره سازی این قبیل داده، مدیریت و بازیابی آن ها را نیز با مشکل مواجه ساخته است. با توجه به آنکه تصاویر پزشکی به عنوان ابزاری قدرتمند در تشخیص زودرس اغلب بیماری ها مورد استفاده هستند، ارائه سیستمی توانمند که بتواند از حجم رو به رشد تصاویر پزشکی، تصاویری با محتوای مشابه را بازیابی نماید، در کنترل و درمان بسیار موثر است. در این مقاله یک سیستم بازیابی تصاویر پزشکی مبتنی بر شبکه عصبی سیامی متشکل از دو زیر شبکه کانولوشن با 13 لایه ارائه شده است. برای رسیدن به زیر مجموعه بهینه از ویژگی های عمیق استخراج شده توسط سیامی، از تکنیک حداقل افزونگی-حداکثر همبستگی (mRMR) استفاده شده است و پس از درهم سازی باینری ویژگی ها، بازیابی تصاویر مشابه با استفاده از فاصله Hamming انجام می شود. اگر چه مدل مطرح قابلیت بازیابی انواع تصاویر پزشکی سطح خاکستری را دارد، اما برای ارزیابی آن، از دو نوع تصاویر ریه، شامل تصاویر سی تی اسکن بیماران کووید-19 در پایگاه داده CT-COV و تصاویر اشعه X بیماران ذات الریه در پایگاه Pneumonia استفاده شده است. نتایج حاکی از آن است که روش پیشنهاد شده در پایگاه کووید به ترتیب در 5 و 10 تصویر بازیابی توانسته است به میانگین دقت 93. 83 % و 92. 73 % و در پایگاه داده ذات الریه به میانگین دقت 100 % دست یابد که در مقایسه با روش های پیشین توانسته است بازیابی تصاویر ریه را بهبود ببخشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 71

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 18 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    46
تعامل: 
  • بازدید: 

    246
  • دانلود: 

    0
چکیده: 

IN CRYPTOGRAPHY, IT HAS BEEN AN IMPORTANT PROBLEM TO TRANSFORM A RANDOM VALUE IN FQ INTO A RANDOM POINT ON AN ELLIPTIC CURVE IN A DETERMINISTIC AND EFFICIENT METHOD.IN THIS PAPER WE PROPOSE A SIMPLER FORM OF SHALLUE-WOESTIJNE-ULAS ALGORITHM IN ORDER TO HASH AN ELEMENT OF FINITE FIELD TO A POINT OF AN ELLIPTIC CURVES. THIS SUBJECT CAN BE USED IN CRYPTOSYSTEMS BASED ON ELLIPTIC CURVES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 246

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Hamidzadeh Javad | Moradi Mona

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    2
  • شماره: 

    3
  • صفحات: 

    39-46
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    27
  • دانلود: 

    0
چکیده: 

Embedding learning is an essential issue in Natural Language Processing (NLP) applications. Most existing methods measure the similarity between text chunks in a context using pre-trained word embedding. However, providing labeled data for model training is costly and time-consuming. So, these methods face downward performance when limited amounts of training data are available. This paper presents an unsupervised sentence embedding method that effectively integrates semantic Hashing into the Kernel Principal Component Analysis (KPCA) to construct embeddings of lower dimensions that can be applied to any domain. The experiments conducted on benchmark datasets highlighted that the generated embeddings are general-purpose and can capture semantic meanings from both small and large corpora.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 27

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
تعامل: 
  • بازدید: 

    127
  • دانلود: 

    0
چکیده: 

SINCE THE NUMBER OF FACIAL ImageS HAS GROWN IN SOCIAL NETWORKS, SUCH AS FACEBOOK AND INSTAGRAM, FACE RECOGNITION HAS BEEN RECOGNIZED AS ONE OF THE IMPORTANT BRANCHES OF Image PROCESSING RESEARCH AREA, AND LARGE DATABASES OF FACE ImageS HAVE BEEN CREATED. AS A RESULT, THE RESPONSE TIME OF THE FACE RECOGNITION SYSTEM IS RECOGNIZED AS A CHALLENGE. FORTUNATELY, DIMENSION REDUCTION TECHNIQUES HELP TO REDUCE THE NUMBER OF COMPUTATIONS SIGNIFICANTLY, WHICH DIRECTLY EFFECTS ON SYSTEM RESPONSE TIME. AS MANY FACIAL FEATURES DO NOT INCLUDE IMPORTANT INFORMATION, WHICH IS REQUIRED FOR GETTING A BETTER RESULT FROM THE FACE RECOGNITION SYSTEMS, THESE TECHNIQUES ARE APPLICABLE FOR FACIAL ImageS, AS WELL. LOCAL FEATURE Hashing (LFH) IS A HASHBASED ALGORITHM THAT HAS BEEN USED FOR FACE RECOGNITION. IT HAS SHOWN NOTABLE COMPUTATIONAL IMPROVEMENTS OVER NAIVE SEARCH AND CAN OVERCOME SOME CHALLENGES, INCLUDING RECOGNITION OF POSE, FACIAL EXPRESSION, ILLUMINATION, AND PARTIAL OCCLUSION PARAMETERS. WITH THE AIM OF IMPROVING THE TIME THAT IT TAKES TO RUN THE LFH ALGORITHM, WE HAVE TESTED SEVERAL VERSIONS OF LOCALITY-SENSITIVE Hashing (LSH) ALGORITHM. THE RESULTS SHOWED THAT SOME OF THESE ALGORITHMS IMPROVE THE RESPONSE TIME OF THE LFH ALGORITHM. IN COMPARISON WITH THE PREVIOUSLY CONDUCTED RESEARCH, THE NUMBER OF INPUT ImageS HAS BEEN INCREASED IN OUR TESTS. BESIDES, THE NUMBER OF EXTRACTED KEY-POINT VECTORS HAVE BEEN DECREASED, AND THE ACCURACY HAS NOT BEEN DECREASED. IN ADDITION, OUR ALGORITHM IS ABLE TO OVERCOME THE CHALLENGE OF THE EXISTENCE OF FOREIGN OBJECTS, SUCH AS GLASS. AMONG ALL DIFFERENT HASH VERSIONS THAT FOR THE FIRST TIME USED FOR FACE RECOGNITION, SOME OF THEM ARE NOT RECOMMENDED FOR THESE SYSTEMS AND SEVERAL FUNCTIONS CAN PROVIDE MINIMUM RESPONSE TIME, RATHER THAN PREVIOUS HASHBASED ALGORITHMS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 127

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    11
تعامل: 
  • بازدید: 

    553
  • دانلود: 

    204
کلیدواژه: 
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 553

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 204
اطلاعات دوره: 
  • سال: 

    1395
  • دوره: 

    5
  • شماره: 

    3-4 (پیاپی 19-20)
  • صفحات: 

    33-42
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    711
  • دانلود: 

    164
چکیده: 

هدف: هدف پژوهش، تعیین میزان جامعیت و مانعیت دو موتورکاوش بینگ و گوگل در بازیابی محتوامحور تصاویر است. روش شناسی: روش پژوهش شبه آزمایشی است، جامعه پژوهش، تصاویر پایگاه های دو موتور کاوش بینگ و گوگل، و نمونه شامل جستجوی 15 تصویر منتخب در هر موتور کاوش است. همه منابع بازیابی شده با جستجوی محتوا محور گردآوری شده و جامعیت و مانعیت نتایج هر موتور کاوش با فرمول ربط محاسبه و میانگین درصد ها به دست آمده است. فرضیه های پژوهش با آزمون یومن ویتنی بررسی شده اند. یافته ها: یافته ها نشان می دهد جامعیت گوگل با % 73/88 دارای رتبه ی بالاتری در میزان بازیابی نسبت به موتور کاوش بینگ با جامعیت % 86/20 است. اما موتور کاوش بینگ با % 86/96 مانعیت، رتبه ی بالاتری در میزان دقت نسبت به موتور کاوش گوگل با %80/94 داشته است. بین میزان جامعیت دو موتور کاوش، تفاوت معناداری با اطمینان 95% وجود دارد اما بین میزان مانعیت آنها تفاوت معناداری موجود نیست.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 711

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 164 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    126-144
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    16
  • دانلود: 

    0
چکیده: 

In this paper, an alternative approach in operational modal analysis is presented, utilizing Image processing technique and transmissibility functions. Imaging sensors do not impose additional mass on the structure due to their non-contact nature, while transmissibility functions, independent of excitation type, can directly extract mode shapes. The innovation of this research lies in combining these two techniques to record dynamic responses and identify modal properties. To capture the temporal response history from video signals, the block-matching method with sub-pixel accuracy was employed. Validation was conducted by recording the response of the tip of a cantilevered steel beam subjected to impact excitation, using a high-speed camera and a laser vibrometer, simultaneously. The RMSE plots in the time domain and the PSD in the frequency domain indicate high accuracy of this method. Using this approach, the displacement time histories of various points on the structure were extracted from the video signals, and the modal properties, including natural frequencies, damping ratios, and mode shapes, were identified using the transmissibility matrix method. The results obtained from the proposed method were compared with the stochastic subspace identification (SSI) method and analytical solutions. The findings reveal the accuracy of the modal identification approach introduced in this article. The highest relative error in estimating the natural frequencies of the first and second modes, compared to the values from the laser method, are 0.19% and 0.13%, respectively, and in comparison to the analytical values, they are 0.34% and 1.5%, respectively.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Sezavar A. | Farsi H. | Mohamadzadeh S.

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    14
  • شماره: 

    4
  • صفحات: 

    314-320
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    17
  • دانلود: 

    0
چکیده: 

Person re-identification (re-id) is one of the most critical and challenging topics in Image processing and artificial intelligence. In general, person re-identification means that a person seen in the field of view of one camera can be found and tracked by other non-overlapped cameras. Low-resolution frames, high occlusion in crowded scene, and few samples for training supervised models make re-id challenging. This paper proposes a new model for person re-identification to overcome the noisy frames and extract robust features from each frame. To this end, a noise-aware system is implemented by training an auto-encoder on artificially damaged frames to overcome noise and occlusion. A model for person re-identification is implemented based on deep convolutional neural networks. Experimental results on two actual databases, CUHK01 and CUHK03, demonstrate that the proposed method performs better than state-of-the-art methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 17

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button